Physical Chemistry

1**G**

- Write the postulates of kinetic theories of gases.
- 2) Derive the equation PV=1/3 mnc² from kinetic theory of gases.
- 3) Explain temperature from kinetic theories of gases.
- 4) Starting from the equation PV=1/3mnc² deduce the following –
- Boyle's law i)
- ii) Charle's law
- Avogadro's law iii)
- iv) Graham's law
- Average KE per mole and per molecule of a gas at a definite temperature. v)
- Daltons law of partial pressure. vi)
- Write Maxwell distribution of molecular velocity with graphical representation.
- Define most probable velocity, average velocity, root mean square velocity and write the ration of them.
- 7) Define collision diameter, collision number, collision frequency
- 8) What is mean free path? Write the relation between mean free path, pressure and temperature.
- 9) Define Specific heat and heat capacities of gases
- 10) Show that $C_p C_v = R$
- 11) Why real gases do not obey ideal behavior?
- 12) Under which condition real gases obey ideal behavior?
- 13) Write the differences between ideal gases and real gases.
- 14) What is compressibility factor?
- 15) Write Vanderwall's equation for 1 mole and 'n' mole of gases.
- 16) Derive Vanderwall's equation followed by volume and pressure correction.
- 17) Write the significance and unit of Vanderwaal's constant 'a' and 'b'.
- 18) What is Boyle's temperature?
- 19) Express Vanderwaal's equation in terms of critical constant.
- 20) How Vanderwaal constant are related with critical volume, critical temperature and critical volume?
- 21) What is Boltzman constant and Loschmidt number?
- 22) What is critical coefficient? Find critical coefficient for Vanderwaal's gas.
- 23) Express Vanderwaal's constant in terms of critical constant.
- 24) What is critical compressibility factor? What is the value for Vanderwaal's gas.
- 25) Write law of corresponding state. Deduce the reduced equation of state for Vanderwaal's gas.
- 26) Calculate average velocity of Nitrogen molecule at 27°C.
- 27) Calculate r.m.s velocity of He molecule at 27°C.
- 28) Calculate the KE of 32 g of methane at 27°C.
- 29) Calculate the most probable velocity of N₂ gas at 27^oC.
- 30) Write the value of C_p/C_v for monoatomic, diatomic and polyatomic gases.
- 31) Draw the Amagat's curve and explain the nature of the plot with the help of vanderwaal's equation.
- 32) Calculate average KE of 1 mole CO₂ gas at 300°C.
- 33) Calculate the mean free path of Ar at normal temperature and pressure. The diameter of Ar atom is 2.24A⁰.