CHEMISTRY

(General)

SECOND PAPER (Group-A)

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(General Chemistry)

(Marks: 20)

Answer any two questions

1. (a) What is lattice energy? Write its mathematical expression. Arrange the following compounds in increasing order of their lattice energy:

LiF, KF, RbF and CsF

- (b) Using VSEPR theory, explain the shape of NF₃ and ClF₃ molecules.
- (c) Write down the molecular electronic configuration of B₂ molecule.

(2+1+2)+3+2=10

(Turn Over)

- 2. (a) Explain the following with examples:
 - (i) Heat of formation
 - (ii) Heat of combustion
 - (b) Establish the criteria for spontaneity of a chemical reaction.
 - (c) Define Hess's law of constant heat summation. Heat of formation of methane at constant pressure is 18500 cal at 25 °C. Calculate the heat of formation at constant volume. 3+3+(2+2)=10
- 3. (a) Derive the relationship between K_p and K_c for the reaction

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

- (b) Under what condition, $K_p = K_c = K_x$? Give an example.
- (c) State Le Chatelier's principle. Discuss the effect of increase of temperature on the following reaction:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 4+2+4=10

(Continued)

UNIT-II

(Inorganic Chemistry)

(Marks: 20)

Answer any two questions

4. (a) State the Werner's postulates of coordination compounds.

- (b) What are metal chelates? Give example with structural representation.
- (c) Define ligands. Give one example each for bidentate and ambidentate ligands.

4+3+3=10

- 5. (a) What are perfect and imperfect complexes? Explain with suitable examples.
 - (b) Write IUPAC names of the following:
 - (i) K₄[Fe(CN)₆]
 - (ii) [CO(en)3]Cl3 (en = ethylene diamine)
 - (c) What are the limitations of valence-bond theory? Using VBT, show that [NiCl₄]²⁻ is tetrahedral, whereas [Ni(CN)₄]²⁻ is square planar.

 3+2+(2+3)=10
- 6. (a) What is meant by magnetic susceptibility? How is it related to magnetic moment?
 - (b) The magnetic moment of [MnCl₄]²⁻ is 5.92 BM. Explain the observation.
 - (c) Calculate the bond order and comment on the magnetic behaviour of the following molecules:

$$O_2, O_2^+, O_2^-, O_2^{2-}$$

(d) Calculate the spin only magnetic moment for Fe³⁺ and Cu²⁺. 3+2+3+2=10

trustion publiquity or alginers suite in the

CHEMISTRY

bine anoma s (General)

SECOND PAPER (Group-A)

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(General Chemistry)

(Marks: 20)

- 1. (a) What is dipole moment? Between NH₃ and NF₃, which one has higher dipole moment and why?
 - (b) From the concept of hybridization, predict the shapes of the following molecules:
 - (i) ClF₃
 - (ii) H₂O

- (c) What is Born-Haber cycle? Discuss its application. 3+(2+2)+3=10
- 2. (a) State the first-law of thermodynamics and express it by a simple equation.
 - (b) Heat of neutralization of a strong acid strong base is always greater than the neutralization of weak acid strong base. Explain.
 - (c) For the reaction

 $H_2F_2(g) \rightarrow H_2(g) + F_2(g)$ $\Delta E = -14.2 \text{ kcal/mol at } 27 \text{ °C}$ Calculate the ΔH for the reaction.

- (d) Explain the following terms with examples:
 - (i) Internal energy
 - (ii) Free energy

2+2+3+3=10

- 3. (a) Explain the following with suitable examples:
 - (i) Homogeneous reaction
 - (ii) Heterogeneous reaction
 - (b) State the law of mass action. For the reaction

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$ derive the expression for equilibrium constant. (c) From the Le Chatelier's principle, state the effect of (i) pressure, (ii) temperature and (iii) catalyst for the following equilibrium:

 $PCl_5 \rightleftharpoons PCl_3 + Cl_2 + Heat$ (2+2)+3+3=10

UNIT-II

(Inorganic Chemistry)

(Marks: 20)

- 4. (a) What is a double salt? How can you differentiate between double salt and complex salt?
 - (b) Explain the following types of isomerization with suitable examples (any two):
 - (i) Ionization isomerism
 - (ii) Hydrate isomerism
 - (iii) Linkage isomerism
 - (c) Using VBT, explain why $[NiCl_4]^{2-}$ is paramagnetic but $[Ni(CN)_4]^{2-}$ is diamagnetic. $3+(2\times2)+3=10$

- 5. (a) What do you mean by (i) paramagnetism, (ii) ferromagnetism and (iii) antiferromagnetism?
- (b) Calculate the magnetic moment for Cu^{2+} and Co^{2+} ions. $(2\times3)+(2\times2)=10$
 - 6. (a) What are inner metallic complexes?

 Discuss their applications.
 - (b) Write the IUPAC nomenclature for the following:
 - (i) [Cr(NH₃)₆][CoF₆]

(c) How can you measure the magnetic susceptibility of a complex by Guoy's method? 4+(1×2)+4=10

CHEMISTRY

(General)

SECOND PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(General Chemistry)

(Marks: 20)

Answer any two questions

- 1. (a) AlF₃ is ionic but AlCl₃ is covalent. Explain.
 - (b) Explain Bent's rule with an example.
 - (c) In between NH₃ and NF₃ which one has higher dipole moment and why?
 - (d) N₂ molecule is chemically inert. Explain. 2+3+3+2=10

(Turn Over)

- 2. (a) Explain with examples the exothermic and endothermic reactions.
 - (b) State the first law of thermodynamics in two different ways.
 - (c) What is heat of reaction? Name the factors that influence the heat of reaction.
 - (d) State the variables, which are kept constant in the following properties:
 - (i) Isothermal
 - (ii) Isobaric

3+2+3+2=10

(Continued)

3. (a) State law of mass action. For the homogeneous reaction

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

derive the expression for equilibrium constant.

- (b) Why is chemical equilibrium called a dynamic equilibrium?
- (c) Derive the relation between k₁ and k₂ of the following reactions:

$$2SO_2$$
 (g) + O_2 (g) $\stackrel{k_1}{\rightleftharpoons} 2SO_3$ (g)

$$SO_3$$
 (g) $\stackrel{k_2}{=} SO_2$ (g) $+\frac{1}{2}O_2$ (g)

- (d) Under what condition K_p = K_c = K_x? Give an example.
- (e) Give an example of heterogeneous equilibrium. 3+2+2+1=10

UNIT-II

(Inorganic Chemistry)

(Marks: 20)

- 4. (a) Discuss the origin of paramagnetism.
 - (b) Explain the effect of temperature on paramagnetic, ferromagnetic and antiferromagnetic substances.
 - (c) The magnetic moment of [MnCl₄]²⁻ is 5.92 BM. Justify the comment.
 - (d) Calculate spin only magnetic moment (μ_s) for Cu²⁺, Co³⁺ and Ni²⁺. 2+3+2+3=10
 - (a) Potash alum is a double salt but potassium ferrocyanide is a complex salt. Explain.

- (b) $[Ni(en)_3]^{2+}$ is 10^{10} times more stable than $[Ni(NH_3)_6]^{2+}$. Explain.
- (c) Write IUPAC name of the following:
 - (i) [Cr(en)3]Cl3
 - (ii) K₄[Fe(CN)₆]
- (d) What are innermetallic compounds?

 Give an example. 3+2+2+3=10
- 6. (a) Define perfect and imperfect complexes with suitable examples.
 - (b) Giving appropriate example, show the occurrence of (i) linkage and (ii) coordination isomerism in coordination compounds.
 - (c) Define coordination number. Write the normal stereochemistries for coordination number 4 and 5 with one example of each.
 - (d) Write the increasing order of bond order in the following molecules:

 O_2 ; O_2^+ ; O_2^- 2+3+3+2=10

CHEMISTRY

(General)

SECOND PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(General Chemistry)

(Marks: 20)

- 1. (a) What is lattice energy? Mention the factors on which it depends.
 - (b) Discuss the shapes of XeF₄ and PCl₅ molecules.
 - (c) By MOT, show that He_2 molecule cannot exist. (1+3)+(2+2)+2=10

- 2. (a) State Le Chatelier's principle.
 - (b) From Le Chatelier's principle, state the effect of (i) pressure, (ii) temperature, (iii) catalyst, (iv) addition of Cl₂ and (v) addition of PCl₅ in the following equilibrium:

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2 + Heat$$

(c) Derive the relationship between K_p and K_c for the following reaction:

$$N_2$$
 (g) + 3H₂ (g) \rightleftharpoons 2NH₃ (g)
2+5+3=10

- 3. (a) State the laws of thermochemistry.
 - (b) Explain the following with suitable examples:
 - (i) Heat of neutralization
 - (ii) Heat of combustion
 - (c) Heat of neutralization of stong acids and bases are constant. Explain. 4+(2+2)+2=10

UNIT-II

(Inorganic Chemistry)

(Marks: 20)

Answer any two questions

- (a) Define ligand and give an example of an ambidentate ligand.
 - (b) What are chelate compounds? Give an example with structure. Mention the use of chelate compounds in analytical chemistry.
 - (c) Describe the postulates of Werner's theory of coordination compounds.

2+4+4=10

- 5. (a) Write the IUPAC names of the following:
 - (i) K[Pt(NH3)Cl5]
 - (ii) [Co(en)₃]Cl₃ (en = ethylene diamine)
 - (b) State and explain valence-bond theory.
 - (c) K₃[Cu(CN)₄] and K₂[Cd(CN)₄] are different classes of compounds. Explain.

(d) How will you detect the formation of coordination complexes in the following reaction?

$$CuSO_4 + 4NH_3 = [Cu(NH_3)_4]SO_4$$

2+4+2+2=10

- 6. (a) Define the following with examples:
 - (i) Paramagnetic substances
 - (ii) Diamagnetic substances
 - (b) Explain the ferromagnetic properties of iron.
 - (c) Calculate the spin-only magnetic moment for Mn⁺² ion.
 - (d) Determine the magnetic susceptibility by Gouy method. 3+2+1+4=10

Marie the IUPA** meant the following

K. CUICNAL BOOK BOOK STORES