TDP (General) 3rd Semester Exam., 2020 (Held in 2021)

CHEMISTRY

(General)

THIRD PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer four questions, taking two from each Unit

UNIT-I

(Organic Chemistry)

- 1. (a) Write down the structures of E- and Z- isomers of 1-bromo-1-chloropropane.
- (b) Draw the Fischer projection formula for R- and S-2-butanol.
 - (c) Assign R/S notation for the chiral centre in the following compounds (any two):
 - (i) D-lactic acid

(ii)
$$\begin{array}{c} \text{COOH} \\ \text{H}_2\text{N} & \text{H} \\ \text{OH} \\ \text{CH}_3 \end{array}$$

(d) Draw the potential energy diagram of ethane and label the maxima and minima with proper configuration.

2+3+2+3=10

- 2. (a) Write the preparation of naphthalene by Haworth synthesis.
 - (b) Identify A and B from the following reactions:

(i)
$$\bigcirc$$
 + 3Cl₂ $\xrightarrow{\text{UV rays}}$ A

- (c) Out of benzene and toluene, which will undergo nitration most easily and why?
- (d) Write two limitations of Friedel-Crafts alkylation reaction.

(e) Identify the following as aromatic/antiaromatic/non-aromatic compounds:

(i) | |

(ii)

(iii)

(iv)

2+2+2+2+2=10

3. (a) Write down the products of the following reactions with plausible mechanisms:

(i)
$$CO_2/NaOH$$
 ? $CO_2/NaOH$? $CO_2/NaOH$? $CO_2/NaOH$?

(iii)
$$OH$$
 $CHCl_3 + NaOH$?

(b) Identify with structures of A, B, C and D of the following reactions:

$$(A) \xrightarrow{\text{CH}_3\text{CH}_2\text{COCl}} A\text{ICl}_3 \Rightarrow [A] \xrightarrow{\text{Or}} [B]$$

$$(A) \xrightarrow{\text{ICl}_3} [A] \xrightarrow{\text{Or}} [B]$$

$$(B) \xrightarrow{\text{H}_2/\text{Pd}} \text{HNO}_3 + \text{H}_2\text{SO}_4$$

$$[D] \xleftarrow{\text{Br}_2/\text{FeBr}_3} [C]$$

$$(2+2+2)+4=10$$

UNIT-II

(Physical Chemistry)

- Hydrolysis of cane sugar is a pseudounimolecular reaction. Explain.
 - Show that the half-life of a first-order reaction does not depend on the initial concentration of the reactant.
 - The rate constant of a first-order reaction is 7×10^{-3} s⁻¹. How long will it take for 2+4+4=10 75% completion?
- What is meant by enzyme catalysis? Give an example.
 - (b) Write the effects of temperature on molality and molarity.

- (c) What is meant by partition coefficient?
- (d) Calculate the number of phases, number of components and number of degrees of freedom for the following reaction:

$$CaCO_3(s) \Rightarrow CaO(s) + CO_2(g)$$

- (e) Explain why electrolytes have abnormally high values of colligative properties. (1+1)+(1+1)+1+3+2=10
- 6. (a) 18.2 g of a non-volatile solute when dissolved in 100 g of water at 50 °C lowers the vapour pressure by 5 mm-Hg. Vapour pressure of pure water at 50 °C is 92 mm-Hg. Find the molar mass of the solute.
 - (b) Show that $\Delta T_f = K_f \cdot C_m$, where the terms have their usual meanings.
 - Define ebullioscopic constant and state 4+4+(1+1)=10 its unit.

13-21-940/197a

TDP (General) 3rd Semester Exam., 2018

CHEMISTRY (General)

THIRD PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer each Unit in separate answer script

Answer four questions, taking two from each Unit

UNIT-I

(Organic Chemistry)

(Marks: 20)

- 1. (a) What is the necessary and sufficient condition for a molecule to be optically active?
 - (b) Define eclipsed and staggered conformation. Give example.
 - (c) Assign R/S notation for the chiral centre in the following compounds:

- (iv) meso-tartaric acid
- (d) Define racemic resolution. 2+3+4+1=10
- 2. (a) Which of the following compounds are aromatic, anti-aromatic or non-aromatic compounds? Justify:

(b) Write the experimental evidences to show that benzene molecule contains three double bonds.

- (c) Naphthalene when reduced with H₂ and Ni, gives two isomeric products. What are they? Write down their structures and conformations.
- (d) Write down the mechanism of nitration of benzene. 4+2½+2+1½=10
- 3. (a) Carry out the following transformations:

(b) Identify with structure of A, B, C and D of the following reactions:

$$\begin{array}{c}
\xrightarrow{\text{CH}_3\text{CH}_2\text{COCl}} \\
& \text{AlCl}_3
\end{array} \xrightarrow{\text{IA}} [A] \xrightarrow{\text{Zn(Hg) + HCl}} [B] \\
& \text{H}_2/\text{Pd} \\
& \text{HNO}_3 + \text{H}_2\text{SO}_4
\end{array}$$

$$[D] \xleftarrow{\text{Br}_2/\text{FeBr}_3} [C] \\
(2\times3)+4=10$$

UNIT-II

(Physical Chemistry)

(Marks: 20)

- **4.** (a) Derive the rate constant for a second-order reaction by considering two different reactants.
 - (b) The value of rate constant of a first-order reaction is 7×10^{-3} s⁻¹. How long will it take for 75% completion?
 - (c) What is enzyme catalysis? Give an example. 4+4+(1+1)=10
- **5.** (a) State the Nernst's distribution law. On what factors does the value of distribution coefficient depend?
 - (b) Draw and explain the phase diagram of carbon dioxide system.
 - (c) Define homogeneous and heterogeneous catalysis with examples.

 $(1+1)+5+(1\frac{1}{2}+1\frac{1}{2})=10$

(Continued)

6. (a) Find the degree of ionization of HF in $0.100 \, M$ aqueous solution if the freezing point depression of the solution is $-0.197 \, ^{\circ}\text{C}$. (K_f for water = $1.86 \, ^{\circ}\text{C}$)

- (b) Derive thermodynamically $\Delta T_f = K_f \times m$.
- (c) Calculate the osmotic pressure of a 5% sugar solution at 27 °C. 3+4+3=10

TDP (General) 3rd Semester Exam., 2017

CHEMISTRY (General)

THIRD PAPER

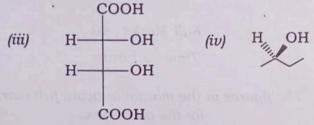
Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer each Unit in separate answer script

Answer four questions, taking two from each Unit


UNIT-I

(Organic Chemistry)

(Marks: 20)

- 1. (a) Define enantiomers and diastereomers with examples.
 - (b) Draw the energy diagram of n-butane as function of rotation about C_2 - C_3 bond and explain it.

(c) Assign R/S notation for the chiral centre in the following compounds:

- (d) Draw the structure of meso-tartaric acid. 2+3+4+1=10
- 2. (a) Indicate the following species as aromatic, non-aromatic, anti-aromatic or homoaromatic compounds. Give reason.

- (b) Write the preparation of naphthalene by Haworth synthesis.
- (c) Write the product(s) and suggest plausible mechanism(s):

$$\bigcirc + CH_3 - CH = CH_2 \xrightarrow{AlCl_3} \xrightarrow{4+3+3=10}$$

(Continued)

3. (a) Discuss the mechanism of the following reaction:

$$\bigcirc + \text{HNO}_3 \xrightarrow{\text{conc. H}_2\text{SO}_4} \bigcirc$$

- (b) What are the limitations of Friedel-Crafts alkylation reaction?
- (c) Write the preparation of phenol from cumene with mechanism.
- (d) Carry out the following transformation with mechanism:

UNIT-II

(Physical Chemistry)

(Marks: 20)

- **4.** (a) For a second-order reaction $2A \rightarrow P$, the half-life is $t_{1/2}$ and the initial concentration of the reactant is a. Find the relation between $t_{1/2}$ and a.
 - (b) A first-order reaction goes to 50% completion in 50 minutes. How long will it take for 80% completion?

- (c) Give an example of catalysis in (i) industry and (ii) daily life. 4+4+(1+1)=10
- 5. (a) Differentiate between diffusion and osmosis.
 - (b) Find the number of phases, number of components and number of degrees of freedom for the following equilibrium:

$$CaCO_3$$
 (s) \rightleftharpoons CaO (s) $+ CO_2$ (g)

- (c) What is meant by triple point of a one-component system? Show that for a one-component system, the triple point is invariant.
- (d) State the Henry's law in connection with the solubility of gases in a liquid.

 (1+1)+3+(1+2)+2=10
- **6.** (a) Derive thermodynamically, $\Delta T_b = k_b \times m$.
 - (b) A 5.13% solution of sugarcane is isotonic with 0.9% solution of an unknown solute.

 Calculate the molecular weight of the unknown solute.
 - (c) What is meant by 'intensive property' of a solution? Give a suitable example.

4+4+2=10

