TDP/BAH1-BSH1/MTMH/14

TDP (Honours) 1st Semester Exam., 2014

MATHEMATICS

(Honours)

FIRST PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

Answer any two of the following questions: 10×2=20

1. (a) If the sum of any two of the quantities x, y, z be greater than the third, then show that

$$(x+y+z)^3 > 27(y+z-x)(z+x-y)(x+y-z)$$
 3

- (b) Find φ (2520), where φ is the Euler phi-function.
- (c) Deduce the following from the Gregory's series:

$$\frac{\pi}{4} = \left(\frac{2}{3} + \frac{1}{7}\right) - \frac{1}{3}\left(\frac{2}{3^3} + \frac{1}{7^3}\right) + \frac{1}{5}\left(\frac{2}{3^5} + \frac{1}{7^5}\right) - \dots$$

M15-310/382

(Turn Over)

(2)

2. (a) Prove by mathematical induction that

$$(\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 + i\sin\theta_2) \cdots (\cos\theta_n + \sin\theta_n) =$$

$$\cos(\theta_1 + \theta_2 + \cdots + \theta_n) + i\sin(\theta_1 + \theta_2 + \cdots + \theta_n)$$

Hence deduce De Moivre's theorem for positive integral index. 4+1=5

- (b) Prove that for any three integers a, b, c ($a, b \neq 0$), the equation ax + by = c has a solution if and only if (a, b) divides c, where (a, b) denotes g.c.d. of a and b.
- 3. (a) Prove that

$$n^n > 1 \cdot 3 \cdot 5 \cdot \cdots (2n-1)$$

- (b) Show that 2²ⁿ⁺¹-9n²+3n-2 is divisible by 54, for all n∈ N (using mathematical induction method).
- (c) Using Chinese remainder theorem, find the solution of the following system:

$$x \equiv 5 \pmod{4}$$

 $x \equiv 3 \pmod{7}$

 $x \equiv 2 \pmod{9}$

M15-310/382

(Continued)

5

(3-)

UNIT-II

Answer any two of the following questions: 10×2=20

4. (a) If f is a function from Q to Q defined as

$$f(x) = 5x + 7$$
, for $x \in Q$

then prove that f is bijective. Also find f^{-1} , where Q is the set of rational numbers.

4

(b) Prove that a non-empty subset H of a group (G, *) is a subgroup of G if and only if for all $a, b \in H$, $a * b^{-1} \in H$.

4

(c) Find the generators of the cyclic group {1, -1, i, -i} with respect to the multiplication.

2

5. (a) A relation R on the set of integers z is defined in the following way:

 $R = \{(a, b) \in z \times z : a - b \text{ is divisible by } 11\}$ Show that R is an equivalence relation. 3

(b) Show that the set z of all integers forms a group under the binary operation * defined by

$$a * b = a + b + 1, a, b \in z$$
 4

M15-310/382

(4)

(c) Define even permutation. Show that the permutation

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 3 & 1 & 2 & 6 & 5
\end{pmatrix}$$

is an even permutation.

3

6. (a) For three sets A, B, C, prove that

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

3

(b) Show that the inverse of the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

is an identity permutation.

3

(c) Prove that every subgroup of a cyclic group is cyclic.

4

UNIT-III

Answer any two of the following questions: 10×2=20

- 7. (a) State and prove Lagrange's theorem. 5
 - (b) Prove that the set of all 2×2 real matrices of the form $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ forms a field with respect to matrix addition and multiplication.

M15-310/382

(5)

8. (a) Prove that the intersection of any two normal subgroups of a group G is a normal subgroup of G.

3

(b) Prove that under matrix addition and multiplication the set of all matrices

$$M = \left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} : a, b \in R \right\}$$

is a non-commutative ring with divisor of zero.

5

(c) Give an example of a subring.

2

9. (a) If f is a homomorphism from a group (G, \circ) to a group (G', *), then prove that f(e) = e', where e and e' are the identity elements of G and G' respectively.

2

(b) Prove that the characteristic of every integral domain is either zero or prime.

3

(c) Prove that every finite integral domain is a field. Give an example of an integral domain which is not a field with proper justification.

5

M15-310/382

(.6)

UNT-IV

Answer any two of the following questions: 10×2=20

10. (a) Prove the identity

$$[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$$

If \vec{a} , \vec{b} , \vec{c} are coplanar, what is your conclusion about $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$?

(b) In any triangle ABC, with usual notations, prove that

$$a = b\cos C + c\cos B$$
 5

11. (a) A vector $\vec{\gamma}$ is perpendicular to both

$$\vec{\alpha} = 4i + 5j - k$$
, $\vec{\beta} = i - 4j + 5k$

and satisfies $\vec{\gamma} \cdot \vec{\delta} = 2$, where $\vec{\delta} = 3i + j - k$, find $\vec{\gamma}$.

(b) Find the equation of the plane passing through the point 2i-j-4k and parallel to the plane

$$\vec{r}$$
 (4i-12j-3k) = 7

where $\vec{r} = (x, y, z)$.

5

M15-310/382

5

5

(7)

- 12. (a) Find the moment about the point 2i+j-k of a force represented by 4i+k acting through the point i-j+2k.
 - (b) Find the shortest distance between two skew lines $\vec{r} = \vec{r_1} + t\vec{\alpha}$, $\vec{r} = \vec{r_2} + t\vec{\beta}$, where t is a scalar and $\vec{r_1}$, $\vec{\alpha}$, $\vec{r_2}$, $\vec{\beta}$ are the vectors

 $\hat{i} - 2\hat{j} + 3\hat{k}$, $2\hat{i} + \hat{j} + \hat{k}$, $-2\hat{i} + 2\hat{j} - \hat{k}$, $-3\hat{i} + \hat{j} + 2\hat{k}$ respectively.

TDP/BAH1-BSH1/MTMH/14

Suradip Pant

S-1/MTMH/01/15

TDP (Honours) 1st Semester Exam., 2015

MATHEMATICS

(Honours)

FIRST PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

Answer any two of the following questions: $10\times2=20$

1. (a) If a, b, c be positive real numbers, then prove that

$$\frac{2}{b+c} + \frac{2}{c+a} + \frac{2}{a+b} > \frac{9}{a+b+c}$$
, unless $a = b = c$ 3

(b) If $a = \cos 2\alpha + i \sin 2\alpha$, $b = \cos 2\beta + i \sin 2\beta$, $c = \cos 2\gamma + i \sin 2\gamma$, $d = \cos 2\delta + i \sin 2\delta$, then prove that

$$\sqrt{\frac{ac}{bd}} + \sqrt{\frac{bd}{ac}} = 2\cos(\alpha + \gamma - \beta - \delta)$$

M16/383

(2)

- (c) Find the least value of $x^{-2} + y^{-2} + z^{-2}$, when $x^2 + y^2 + z^2 = 12$.
- 2. (a) State Cauchy-Schward inequality. If x, y, z be positive real numbers such that $x^2 + y^2 + z^2 = 27$, then show that

$$x^3 + y^3 + z^3 \ge 81$$

(b) If $d = \gcd(a, b)$, then prove that

$$\gcd\left(\frac{a}{d} + \frac{b}{d}\right) = 1$$

(c) Deduce from the Gregory's series

$$\pi = 2\sqrt{3}\left(1 - \frac{1}{3\cdot 3} + \frac{1}{5\cdot 3^2} - \frac{1}{7\cdot 3^3} + \cdots\right)$$

3. (a) State the Chinese remainder theorem.
Use it to solve the system

$$x \equiv 1 \pmod{4}, x \equiv 3 \pmod{7}, x \equiv 2 \pmod{9}$$
1+4=5

- (b) Show that $7^{2n} + 16n 1$ is divisible by 64 for all n + N (using mathematical induction method).
- (c) Find φ(5186), where φ is the Euler phi-function.

M16/383

١,

(3)

UNIT-II

Answer any two of the following questions: 10×2=20

- 4. (a) Define a group. 2
 - (b) Prove that the set of rational numbers forms an Abelian group under the operation * defined as follows:
 5
 for any a, b∈ Q, a * b = ab
 - (c) Prove that a relation R defined on a set A is an equivalence relation if and only if R be reflexive and aRb and bRc implies cRa.
- 5. (a) If every element of a group (G, *) is its own inverse, then prove that G is Abelian. 2
 - (b) Express the following permutation as a product of disjoint cycles and find its order:

 $\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 8 & 9 & 6 & 4 & 5 & 2 & 3 & 1
\end{pmatrix}$

- (c) Find the order of the element 8 in the group (Z₁₄, +₁₄).
- (d) Prove that the order of a cyclic group is the same as the order of its generator and conversely.

M16/383

(Turn Over)

(4)

6. (a) Prove that the union of two subgroups of a group is a subgroup iff one is contained in the other. Give an example to show that the union of two subgroups is not always a subgroup.

(b) Show that for any two elements a and b of a group G, a and $b^{-1}ab$ have the same order.

(c) In a group G, prove that $(ab)^2 = a^2b^2$ if and only if $(ab)^{-1} = a^{-1}b^{-1}$.

UNIT-III

Answer any two of the following questions: 10×2=20

- 7. (a) Let H be a subgroup of a group G and let $a, b \in G$. Prove that aH = H iff $a \in H$.
 - (b) ϕ is a homomorphism from a group G to a group G'. If $g \in G$ be such that O(g) = n, then prove that $O(\phi(g))$ divides n.
 - (c) Define normal subgroup. If N is a normal subgroup of a group G and H is any subgroup of G, then prove that NH is a subgroup of G.
 1+4=5
- 8. (a) Prove that the intersection of any collection of ideals of a ring R is an ideal of R.

M16/383

4

5

(5)

- (b) Prove that a non-empty subset S of a ring R is a subring of R iff $a-b \in S$ and $ab \in S$ whenever $a, b \in S$.
- (c) Prove that the characteristic of an integral domain is either zero or a prime.
- 9. (a) Prove that the set of numbers of the form $a+b\sqrt{3}$, where a and b are rational numbers forms a field under usual addition and multiplication.
 - (b) If in a ring R, $a^2 = a$, for all $a \in R$, then prove that R is commutative.
 - (c) Show that a finite commutative ring without zero divisors has a unity.

Unit—IV

Answer any two of the following questions: 10×2=20

10. (a) If \vec{e}_1 and \vec{e}_2 be two unit vectors and θ be the angle between them, then show that

$$2\sin\frac{\theta}{2} = |\vec{e}_1 - \vec{e}_2|$$
 5

(b) If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are the three vectors, then prove that

$$\vec{\alpha} \times (\vec{\beta} \times \vec{\gamma}) = (\vec{\alpha} \cdot \vec{\gamma}) \vec{\beta} - (\vec{\alpha} \cdot \vec{\beta}) \vec{\gamma}$$

M16/383

3

(6)

 (a) In any triangle ABC, with usual notations, prove that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- (b) Find the work done by a particle acted on by a force $5\hat{i} + 10\hat{j} + 15\hat{k}$ for the displacement from the point $\hat{i} + 3\hat{k}$ to $3\hat{i} \hat{j} 6\hat{k}$.
- (c) Show that the moment of a force $4\hat{i} + 2\hat{j} + \hat{k}$ through the point $5\hat{i} + 2\hat{j} + 4\hat{k}$ about the point $3\hat{i} \hat{j} + 3\hat{k}$ is $\hat{i} + 2\hat{j} 8\hat{k}$.
- 12. (a) If the volume of a tetrahedron is 3 cu. units and three of its vertices have position vectors (1, 1, 0), (1, 0, 1) and (2, -1, 1), then find the locus of the fourth vertex.
 - (b) Find the equation of the plane passing through the points (2, -1, 4), (3, 4, 7) and (-2, 3, -1).
 - (c) If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, then prove that the vectors \vec{a} and \vec{b} are orthogonal.

S-1/MTMH/01/17

TDP (Honours) 1st Semester Exam., 2017

MATHEMATICS

(Honours)

FIRST PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

Answer any two of the following questions: $10\times2=20$

- 1. (a) If a, b, c be positive and a+b+c=1, then show that $\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right) \ge 8$ and the least value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ is 9. 2+2=4
 - (b) State De Moivre's theorem and establish it for positive integral value of n. 1+2=3
 - (c) Find the g.c.d. of 256 and 1166 and hence express the g.c.d. as a linear combination of 256 and 1166.

BM/23

3

(2)

2. (a) If each of a, b, c, d be greater than 1, then show that

$$8 (abcd+1) > (a+1)(b+1)(c+1)(d+1)$$
 3

- (b) Using the principle of finite induction, prove that $1+2+3+...+n=\frac{n(n+1)}{2}$, for all integers $n \ge 1$.
- (c) Prove that the equation ax + by = c has a solution iff (a, b) divides c $(a \ne 0, b \ne 0)$ and c are integers).
- 3. (a) Use Chinese remainder theorem to solve the simultaneous systems of linear congruences:

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$
$$x \equiv 2 \pmod{7}$$

(b) Deduce from the Gregory's series

$$\tan^{-1} \frac{1 - \cos \theta}{1 + \cos \theta} = \tan^2 \frac{\theta}{2} - \frac{1}{3} \tan^6 \frac{\theta}{2} + \frac{1}{5} \tan^{10} \frac{\theta}{2} - \dots,$$
if $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ 3

(c) Prove that

$$\sin\left(i\log\frac{a-ib}{a+ib}\right) = \frac{2ab}{a^2+b^2}$$

M/23 (Continued)

(3)

UNIT-II

Answer any two of the following questions: $10\times2=20$

- 4. (a) Show that the set Z of all integers can be partitioned into equivalence classes by a relation ρ, defined on it by x ρ y ⇔ x² y² is divisible by 5. Find the distinct equivalence classes of Z by ρ. 3+2=5
 - (b) Show that identity element in a group (G, *) is unique.
 - (c) Find a subgroup of $G = \{1, -1, i, -i\}$, where (G, \bullet) forms a group under multiplication ' \bullet '.
- 5. (a) Determine whether the permutation

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 5 & 6 & 3 & 7 & 4 & 2 & 1
\end{pmatrix}$$

is even or odd.

2

(b) Show that the set

$$M_2(R) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

is an Abelian group under matrix multiplication. Is it a cyclic group? 3+1=4

(c) Let f:R→R and g:R→R be two mappings defined by f(x) = x² and g(x) = cos x respectively. Find f ∘ g and g ∘ f. Is the composition '∘' commutative?

11/2+11/2+1=4

8M/23 .

		· · /	
5.	(a)	. $3/37$ If $X = \{x : x \in \mathbb{R}, x \neq 0\}$, then prove that the mapping $f: X \to X$ defined by $f(x) = \frac{1}{x}$ is one-one and onto, where \mathbb{R} is the set of	;
		real numbers.	3
	(b)	Prove that the union of two subgroups is a subgroup iff one is contained in the other.	3
	(c)	Define cyclic group. Show that the set $\{1, \omega, \omega^2\}$ forms a multiplicative cyclic group (where ω is the cube root of unity) and hence find the generators.	4
18	wer a	UNIT—III any two of the following questions: 10×2=	20
7.	(a)	Prove that any two right (or left) cosets of a subgroup H of G are either disjoint or identical.	4
	(b)	Let $(G, \bullet) = (Z, +)$ and $(G', *) = mz : z(Z, +)$ and $f: G \to G'$ be defined by $f(z) = mz \ \forall \ z \in Z$, the set of integers. Examine whether f is isomorphism or	
		not.	4
	(c)	Prove that identity element of a ring is unique.	2

M/23

(5)

- 8. (a) Prove that the set of integers forms a commutative ring with unity for ordinary addition and multiplication.
 (b) Let S and T be two subrings of a ring R. Show that S∩T is a subring of R.
 (c) Let G = S₃, G' = ({1, -1}, •) and φ: G → G' is defined by
 - $\phi(\alpha) = 1$ if α is an even permutation in S_3 = -1 if α is an odd permutation in S_3 Determine ker ϕ .
- 9. (a) Let $\phi: (G, \circ) \to (G', *)$ be an isomorphism. Prove that $\phi^{-1}: (G', *) \to (G, \circ)$ is also an isomorphism.
 - (b) Define normal subgroup. Prove that the centre of a group G is a normal subgroup of G.

 1+3=4
 - (c) Prove that every field is an integral domain.

Unit—IV

Answer any two of the following questions: $10\times2=20$

10. (a) Verify whether the following points are collinear or not $-2\vec{a} + 3\vec{b} + 5\vec{c}$, $\vec{a} + 2\vec{b} + 3\vec{c}$, $7\vec{a} - \vec{c}$.

3M/23

(Turn Over)

(b) On the line $\frac{x-3}{9} = \frac{y+4}{6} = \frac{z+2}{2}$, find two points each of whose distance from (3, -4, -2) is 22.

4

Find the moment about (1, -1, 1) of the force $3\hat{i} + 4\hat{j} - 5\hat{k}$ acting at (1, 0, -2).

3

11. (a) Show that the torque about the point $3\hat{i} - \hat{j} + 3\hat{k}$ of a force represented by $4\hat{i} + 2\hat{j} + \hat{k}$ passing through the point $5\hat{i} + 2\hat{j} + 4\hat{k}$ is $\hat{i} + 2\hat{j} - 8\hat{k}$.

3

(b) Show that

Show that
$$\begin{bmatrix} \vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b} \end{bmatrix} = [\vec{a} \ \vec{b} \ \vec{c}]^2$$

3

(c) Find a unit vector, in the plane of the vectors $(\hat{i} + 2\hat{j} - \hat{k})$ and $(\hat{i} + \hat{j} - 2\hat{k})$, which is perpendicular to the vector $(2\hat{i} - \hat{j} + \hat{k})$.

4

12. (a) Show that the volume of the parallelopiped whose edges are represented by $(3\hat{i} + 2\hat{j} - 4\hat{k})$, $(3\hat{i} + \hat{j} + 3\hat{k})$ and $(\hat{i} - 2\hat{j} + \hat{k})$ is 49 cubic units.

4

(b) A particle being acted on by constant forces $(4\hat{i} + \hat{j} - 3\hat{k})$ and $(3\hat{i} + \hat{j} - \hat{k})$ is displaced from the point $(\hat{i} + 2\hat{j} + 3\hat{k})$ to the point $(5\hat{i} + 4\hat{j} - \hat{k})$. Find the total work done by the forces.

3

M/23

(7)

(c) If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, then find the angles which \vec{a} makes with \vec{b} and \vec{c} , \vec{b} and \vec{c} being non-parallel.

S-1/MTMH/01/16

TDP (Honours) 1st Semester Exam., 2016

MATHEMATICS

(Honours)

FIRST PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any two of the following questions: 10×2=20

1. (a) If a and b be two unequal positive real numbers, then prove that

$$\sqrt{ab} > \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

(b) If

 $\cos\alpha + \cos\beta + \cos\gamma = 0 = \sin\alpha + \sin\beta + \sin\gamma$ then prove that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =$$

$$\sin^2\alpha + \sin^2\beta + \sin^2\gamma = \frac{3}{2}$$

M7/23

(2)

(c) Using Gregory's series, prove that

$$\frac{\pi}{8} = \frac{1}{1 \cdot 3} + \frac{1}{5 \cdot 7} + \frac{1}{9 \cdot 11} + \dots$$

- 2. (a) Find the g.c.d. and l.c.m. of 306, 657.
 - (b) Prove that

$$\tan^{-1}\left[\frac{i(x-a)}{x+a}\right] = -\frac{i}{2}\log\frac{a}{x}$$

- (c) Prove that if p is a prime and p|ab, then p|a or p|b.
- 3. (a) By using the principle of induction, prove that

$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{4n^3 - n}{3}$$

for each $n \ge 1$.

(b) Prove that for two integers a and b with b > 0, there exist unique integers q and r such that a = bq + r, $0 \le r < b$.

(c) Find the general solution of

$$170x - 455y = 625$$

M7/23 (Continued)

3

(3)

UNIT-II

Answer any tu	un of the	fallowing at	actions :	10×2=20
Answer any u	oo or the	ionownis di	restions.	10^2-20

- **4.** (a) Show that whether the relation $R = \{(x, y) \mid x \ge y\}$ is reflexive, symmetric or transitive in the set of real numbers. $3\frac{1}{2}$
 - (b) Let (G, 0) be a finite cyclic group of order n>1, generated by a. Prove that for a positive integer r, a^r is also a generator of the group iff r is less than n and prime to n.
 - (c) If a be an element of a group G such that $a^2 = a$, then show that a = e. $2\frac{1}{2}$
- **5.** (a) If $f: Q \to Q$ is defined by f(x) = ax + b, where $a, b, x \in Q$, the set of rationals, then show that whether f is one-one and onto.
 - (b) Show that the set of all real numbers is a groupoid but not a semigroup under the operation ∘ defined by a ∘ b = a + 3b, ∀ a, b ∈ R.
 2
 - (c) Prove that of the n! permutations on n symbols (n > 1), $\frac{n!}{2}$ are even permutations and $\frac{n!}{2}$ are odd permutations.

M7/23 (Turn Over)

(4)

6. (a) Examine if the relation

 $\rho = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : 3a + 4b \text{ is divisible by } 7\}$ on the set \mathbb{Z} is an equivalent relation.

(b) Find the order of the permutation

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 1 & 3 & 2 & 8 & 6 & 7 \end{pmatrix}$

(c) Show that every subgroup of a cyclic group is cyclic.

Unit—III

Answer any two of the following questions: $10\times2=20$

- 7. (a) Let G be the additive group of integers and H the additive subgroups of even integers with zero. Find the cosets of H in G.
 - (b) Prove that every finite integral domain is a field.
 - (c) Define characteristic of a ring. Prove that in a ring R for all $a \in R$, $a \cdot 0 = 0 \cdot a = 0$. 1+3=4

M7/23 (Continued)

(5)

- 8. (a) Define simple group. Whether every group of prime order is simple. Justify your answer.

 1+2=3
 - (b) Define homomorphism of two groups. Let $G = (\mathbb{Z}, +), G' = (2\mathbb{Z}, +)$ and a mapping $\phi: G \to G'$ be defined by $\phi(a) = 2a, a \in G$. Examine if ϕ is a homomorphism. 1+2=3
 - (c) State and prove Lagrange's theorem. 4
- 9. (a) If H be a subgroup of a group G and [G:H]=2, then prove that H is normal in G.
 - (b) If $\phi: G \to G'$ be a homomorphism, then prove that $\phi(G)$ is a subgroup of G', where $\phi(G)$ is the homomorphic image of ϕ .
 - (c) Prove that (Z₆, +, ∘) is a commutative ring with unity having zero divisor.

UNIT-IV

Answer any two of the following questions: $10\times2=20$

- 10. (a) Find the unit vector perpendicular to each of $\vec{a} = 6\hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} 6\hat{j} 2\hat{k}$.
 - (b) Prove the following: 2+2=4(i) $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$ (ii) $(\vec{b} \times \vec{c}) \times (\vec{b} \times \vec{a}) = [\vec{a} \ \vec{b} \ \vec{c}] \ \vec{b}$

M7/23 (Turn Over)

3

(6)

- (c) Find the equation of the plane passing through the points (-1, 1, 2), (1, -2, 1) and (2, 2, 4).
- 11. (a) Prove by vector method, the trigonometrical formula

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

(b) Show that the four points whose position vectors are given as

$$-6\vec{a} + 3\vec{b} + 2\vec{c}, 3\vec{a} - 2\vec{b} + 4\vec{c}, 5\vec{a} + 7\vec{b} + 3\vec{c}$$

and $-13\vec{a} + 17\vec{b} - \vec{c}$

are coplanar; a, b, c being three non-coplanar vectors.

- (c) Find the vector equation of the st $\frac{24/3}{6}$ line passing through the points $(\hat{i} + j + \kappa)$ and $(3\hat{i} + 2\hat{j} \hat{k})$.
- 12. (a) A particle acted on by constant forces $5\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} \hat{j} 3\hat{k}$ is displaced from the origin to the point $4\hat{i} + \hat{j} 3\hat{k}$. Find the total work done by the forces.

M7/23 (Continued)

(7)

(b) Show that the volume of a tetrahedron whose vertices are \vec{a} , \vec{b} , \vec{c} , \vec{d} is

$$\frac{1}{6} [\vec{a} - \vec{d} \ \vec{b} - \vec{d} \ \vec{c} - \vec{d}]$$

(c) P(1, 3, -1), Q(0, 1, 6), R(-1, 3, 1) are three points in space. Find the coordinates of a point S on the y-axis such that the volume of the tetrahedron PQRS is 10.

24/3

S-1/MTMH/01/18

TDP (Honours) 1st Semester Exam., 2018

MATHEMATICS

(Honours)

FIRST PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer eight questions, taking two from each Unit

UNIT-I

1. (a) If a, b, c be any three positive real numbers, then prove that

$$\frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} + \frac{a^2 + b^2}{a + b} \ge a + b + c$$

- (b) If $\log \sin(\theta + i\phi) = \alpha + i\beta$, then prove that $2e^{2\alpha} = \cosh 2\phi \cos 2\theta$; θ , ϕ , α , β are real.
- (c) Use Chinese remainder theorem to solve the system of linear congruences: 4

$$x \equiv 1 \pmod{4}$$

$$x \equiv 3 \pmod{7}$$

 $x \equiv 2 \pmod{9}$

M9/16

(2)

2. (a) State mth power theorem. If a, b, c be three positive numbers such that their sum is unity, then find the least value of

$$\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2$$

applying mth power theorem.

1+3=4

(b) What is the remainder when the following sum is divided by 4? 3

$$1^5 + 2^5 + 3^5 + 4^5 + ... + 100^5$$

- (c) Find the general values and the principal value of $(-1+i)^i$.
- 3. (a) Find \$\phi(2520)\$, where \$\phi\$ denotes Euler phi-function.
 - (b) Show that the roots of $x^7 = 1$ are multiples of α , where $\alpha = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$ and also prove that the roots of $x^2 + x + 2 = 0$ are $\alpha + \alpha^2 + \alpha^4$ and $\alpha^3 + \alpha^5 + \alpha^6$.
 - (c) Write the second principle of mathematical induction. By using the principle of induction, prove that

$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{4n^3 - n}{3}$$

for each $n \ge 1$.

1+3=4

3

M9/16

(3)

UNIT-II

4. (a) Let $f: S \to \mathbb{R}$ be defined by f(x) = [x] - x, $x \in S$ and $g: S \to \mathbb{R}$ be defined by g(x) = 1 - x, where $S = \{x \in \mathbb{R} : 1 \le x < 2\}$. Show that f = g.

3

4

Show that the set z of all integers forms (b) a group under binary operation * defined by a*b=a+b+1; $a,b\in \mathbb{Z}$.

Determine whether the permutation

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 3 & 1 \end{pmatrix}$

is even or odd.

(c)

3

5. (a) Let z be the set of all integers. If $a, b \in z$, we define $a \equiv b \pmod{5}$, if (a-b) is divisible by 5. Prove that \(\mathbb{i} \) is an equivalence relation on z.

3

- Prove that the intersection of two (b) subgroups of a group is again a subgroup of the group. Give an example to show that the union of two subgroups 3+1=4 is not always a subgroup.
- Prove that every subgroup of a cyclic (c) group is cyclic.

M9/16

(Turn Over)

(4)

6.	(a)	(a) Let $S = \{x : x \text{ is a real number}\} - \{-1\}$. Define * on S by $a * b = a + b + a \cdot b$. Show that $\langle S, * \rangle$ forms a group.				
	(b)	Prove that the necessary and sufficient condition for a non-empty subset S of a group (G, *) to be a subgroup is				
		$a \in S, b \in S \Rightarrow a * b^{-1} \in S$				
		where b^{-1} is the inverse of b in G.	4			
	(c)	Show that $(\mathbb{Z}_4, +)$ is a cyclic group.	3			
		Unit—III				
7.	(a)	Prove that any two left cosets of a subgroup are either disjoint or identical.	3			
	(b)	Let $\phi: (G, \circ) \to (G', *)$ be a homomorphism. Prove that $\ker \phi$ is a normal subgroup of G .	3			
	(c)	Show that the set of even integers is a subring of the ring of integers under usual addition and multiplication.	4			
8.	(a)	Prove that the set $S = \{a + b\sqrt{5} : a, b \in Q\}$				
		is a subfield of the field IR.	3			
	(b)	Prove that a finite integral domain is a field.	3			

M9/16

(5)

(c)	Prove	that	the	characteristic			of	an	
	integra	al dor	main	is	either	zero	or	а	
	prime.								

4

9. (a) Are the groups $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ isomorphic? Justify.

3

(b) Show that the set of all integers forms an integral domain but not a field.

4

(c) Prove that a subset S of a field $(F, +, \cdot)$ having at least two elements is a subfield iff for any two elements x, $y(y \neq 0)$ of S, x-y and $x \cdot y^{-1}$ belong to S.

3

UNIT-IV

- 10.
- If two medians of a triangle are equal, then by vector method prove that the triangle is isosceles.

3

(b) Find the torque about the point (1, 2, -1) of a force represented by $3\hat{i} + \hat{j} + \hat{k}$ acting through the point (2, -1, 3).

3

(c) Find the shortest distance between two skew lines $\vec{r} = \vec{r_1} + t\vec{\alpha}$ and $\vec{r} = \vec{r_2} + t\vec{\beta}$ where $\vec{r_1} = (-5, -5, 1)$, $\vec{\alpha} = (3, 2, -2)$, $\vec{r_2} = (9, 0, 2)$, $\vec{\beta} = (6, -2, -1)$.

4

M9/16

(6)

11. (a) Reduce the expression

$$[(\vec{b} + \vec{c}), (\vec{c} + \vec{a}), (\vec{a} + \vec{b})]$$

in its simplest form. Hence prove that it vanishes when \vec{a} , \vec{b} , \vec{c} are coplanar.

3+1=4

(b) A particle acted on by constant forces $5\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} - \hat{j} - 3\hat{k}$ is displaced from the origin to the point $4\hat{i} + \hat{j} - 3\hat{k}$. Find the total work done by the forces.

3

(c) Find the vector equation of the plane passing through the points $2\hat{i} - 3\hat{j} - \hat{k}$, $5\hat{i} - 7\hat{j} + 9\hat{k}$ and $2\hat{i} - \hat{j} + 3\hat{k}$.

3

12. (a) If $\vec{\alpha} = \hat{i} + \hat{j} - 2\hat{k}$, $\vec{\beta} = -\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{\gamma} = 5\hat{i} + 8\hat{k}$, then determine scatters c and d such that $\vec{\gamma} - c\vec{\alpha} - d\vec{\beta}$ is perpendicular to both $\vec{\alpha}$ and $\vec{\beta}$.

3

(b) Prove by vector method that in a triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

where BC = a, CA = b., AB = c.

3

M9/16

(7)

(c) Show that the line through P(4, -3, -1) and parallel to the vector (1, 4, 7) is

$$\frac{x-4}{1} = \frac{y+3}{4} = \frac{x+1}{7}$$

and find two points on it at a distance of $\sqrt{1056}$ from P.

S-1/MTMH/01/19

TDP (Honours) 1st Semester Exam., 2019

MATHEMATICS

(Honours)

FIRST PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer eight questions, taking two from each Unit

UNIT-I

1. (a) If n be a positive integer, then prove that

$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right)+i\sin\left(\frac{n\pi}{2}-n\theta\right)$$

- (b) If $a \mid bc$ and (a, b) = 1, then show that $a \mid c$. 2
- (c) If a, b, c be three positive numbers and a+b+c=1, then show that the least value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ is 9 and prove that

$$(1-a)(1-b)(1-c) > 8abc$$
 4

20M/22

(2)

2. (a) Prove that

$$\frac{1}{2\sqrt{n+1}} < \frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \dots, \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$$

- (b) Find the values of φ(1025), φ(1125) and φ(1024), where φ is the Euler's φ function.
- (c) Using Gregory's series, prove that

$$\frac{\pi}{8} = \frac{1}{1 \cdot 3} + \frac{1}{5 \cdot 7} + \frac{1}{9 \cdot 11} + \cdots$$

3. (a) If a, b, c, d be four positive numbers, then show that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} \ge 4$$

(b) Use Chinese remainder theorem to solve the simultaneous systems of linear congruences

$$x \equiv 3 \pmod{6}$$

$$x \equiv 5 \pmod{7}$$

$$x \equiv 2 \pmod{11}$$

(c) Show that the product of all the values of $(1+i\sqrt{3})^{\frac{3}{4}}$ is 8.

20M/22 (Continued)

3

2

(3)

UNIT-II

- 4. (a) Show that the set of cube roots of unity is a finite Abelian group with respect to multiplication.
 - (b) Define order of an element in a group. Prove that the orders of the elements a and $x^{-1}ax$ are the same, where a and x are two elements of the group. 1+4=5
 - (c) Verify whether

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 1 & 2 & 6 & 7 & 5
\end{pmatrix}$$

is an odd permutation or an even permutation.

- 5. (a) Define dihedral group. State and prove the necessary and sufficient conditions for a non-empty subset of a group to be a subgroup. 1+1+4=6
 - (b) Show that the mapping $f: R \to (-1, 1)$ defined by $f(x) = \frac{x}{1+x^2}$, $x \in R$ is not bijective, where R is the set of real numbers.
- 6. (a) Give an example to show that the union of two subgroups may not be a subgroup.

20M/22

4

4

3

(4)

- (b) A relation R is defined on the set Z (the set of all integers) by ${}_aR_b$ if and only if 2a+3b be divisible by 5, for all $a, b \in Z$. Prove that R is an equivalence relation.
- (c) Define cyclic group. Prove that the order of the cyclic group is the same as the order of its generator. 1+3=4

UNIT—III

- 7. (a) Prove that every finite integral domain is a field. Show that the set of numbers of the form $a+b\sqrt{2}$, where a and b are integers, does not form an integral domain under ordinary addition and multiplication. 4+2=6
 - (b) Define normal subgroup. Show that N is a normal subgroup of a group G if and only if $gNg^{-1} = N$, for every $g \in G$.
- 8. (a) Prove that the characteristic of an integral domain is either zero or a prime number.
 - (b) Prove that the homomorphism φ of the ring R into the ring R' is an isomorphism if and only if the kernel of φ is {0}.

20M/22

(5)

(c) Show that if the two right cosets Ha and Hb be distinct, then the two left cosets $a^{-1}H$ and $b^{-1}H$ are distinct.

3

9. (a) Prove that the set of all 2×2 real matrices of the form $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ forms a field with respect to matrix addition and multiplication.

4

(b) If U is an ideal of the ring R, then prove that R/U is a ring and is a homomorphic image of R. 4+2=6

UNIT—IV

10. (a) Prove by vector method, the formula $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

4

(b) Find the value of the constant d, such that the vectors $(2\hat{i} - \hat{j} + \hat{k})$, $(\hat{i} + 2\hat{j} - 3\hat{k})$ and $(3\hat{i} + d\hat{j} + 5\hat{k})$ are coplanar.

4

(c) If $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then can you conclude that $\vec{b} = \vec{c}$? Give reasons for your answer.

2

20M/22

(6)

- 11. (a) For three vectors \vec{a} , \vec{b} , \vec{c} prove that $[\vec{b} \times \vec{c} \ \vec{b} \times \vec{c} \ \vec{b} \times \vec{c}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$
 - (b) Find a unit vector which is perpendicular to each of the vectors $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$. Show, by vector method, that the straight line joining the mid-points of the two non-parallel sides of a trapezium is half the sum of the two parallel sides. 1+4=5
 - (c) Find the vector equation of the plane passing through the three points (-1, 1, 2), (1, -2, 1) and (2, 2, 4).
- 12. (a) A particle being acted on by constant forces $(4\hat{i} + \hat{j} 3\hat{k})$ and $(3\hat{i} + \hat{j} \hat{k})$ is displaced from the point $(\hat{i} + 2\hat{j} + 3\hat{k})$ to the point $(5\hat{i} + 4\hat{j} \hat{k})$. Find the total work done by the forces.
 - (b) Show that the vector $\vec{b} \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a}$ is perpendicular to the vector \vec{a} .

20M/22

(7)

(c) Find by vector method, the volume of the tetrahedron, the coordinates of whose vertices are (0, 1, 2), (3, 0, 1), (1, 1, 1) and (4, 3, 2).

4

TDP (Honours) 1st Semester Exam., 2021 (Held in 2022)

MATHEMATICS

(Honours)

FIRST PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer eight questions, taking two from each Unit

The symbols used have their usual meanings

UNIT-I

1. (a) Separate sin(x+iy) into real and imaginary parts, x, y being real. Also show that

$$|\sin(x+iy)|^2 = \sin^2 x + \frac{1}{4}(e^y - e^{-y})^2$$
 5

22M/78

(b) If p, q, r, s be all positive, then show that

$$\frac{(p+q)rs}{ps+qr} \le \frac{pr+qs}{p+q}$$

- (c) Find the values of $(1+i\sqrt{3})^{\frac{1}{2}}$.
- 2. (a) If $x + \frac{1}{x} = 2\cos\frac{\pi}{7}$, then show that

$$x^7 + \frac{1}{x^7} = -2$$

(b) Deduce the following using the Gregory's series:

the sumbols used have their usual monnings

$$\pi = 2\sqrt{3} \left[1 - \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} - \frac{1}{7 \cdot 3^3} + \cdots \right]$$

- (c) Find GCD of 723 and 24 by Euclidian algorithm.
- 3. (a) Show that the product of all the values of $(1+i\sqrt{3})^{3/4}$ is 8.
 - (b) Prove that if $ac \equiv bc \pmod{m}$ and GCD (c, m) = 1, then $a \equiv b \pmod{m}$.

22M/78

(c) Use Chinese remainder theorem to solve

		the simultaneous system of linear	
	(11	congruences	
	1,	$x \equiv 3 \pmod{6}$	
		$x \equiv 5 \pmod{7}$	
		$x \equiv 5 \pmod{7}$ $x \equiv 2 \pmod{11}$	4
	,	ulaign y a out of the fire goods	
	67.	er Define theall tinux cond of the	
4.	(a)	If R be an equivalence relation in a	
	(55)	set A, then show that R^{-1} is also an	
		equivalence relation.	3
	<i>a</i> \	**************************************	
	(b)	Let $G = S_3$, $G' = (\{1, -1\}, *)$ and $\phi: G \to G'$	
		is defined by Holls gon a solf I will	7
		$\phi(\alpha) = 1$ if α is an even permutation in S_3	
		= -1 if α is an odd permutation in S	3
,	*	Determine ker ø.	4
	(c)	Show that $(A-B)$ and $A \cap B$ are disjoint	
	` '	set	3
	Add.	by Define integral domain Shess these	
5.		Define cyclic group. Prove that every	
		subgroup of a cyclic group is cyclic.	
	e en d	=8+1 your snswer. I - 1	4
	(b)	Define permutation group. If $a = (1 \ 2 \ 3 \ 4)$,	
	47.	then show that the set $\{a, a^2, a^3, a^4\}$	0
			4
	(c)	Define order of a group and order of the	
	(C)		2
22M/	78	(Turn Over)
•			•

- Prove that the intersection of any two 6. (a) subgroups of a group (G, *) is again a subgroup of (G, *). Is their union a subgroup? Justify your answer. 3+1=4
 - Prove that if a is a generator of a cyclic (b) group, then a^{-1} is also a generator. 4
 - Define alternating group. Give an (c) example of alternating group. 1+1=2

UNIT-III

- 7. (a) If R be a ring such that $a^2 = a$, $\forall a \in R$, then prove that—

(i)
$$ab = ba$$
, $\forall a, b \in R$
(ii) $a + a = 0$, $\forall a \in R$ $2+2=4$

- (b) Define integral domain. Show that every field is an integral domain. Is the converse of the theorem is true? Justify your answer. 1+4+1=6
- Define normal subgroup. If N is a 8. (a) normal subgroup of a group G and H is any subgroup of G, then prove that NHis a subgroup of G.

22M/78

(Continued)

4

(b) Prove that in a group G, the subset $A = \{a \in G : ag = ga, \forall g \in G\}$ is a normal subgroup of G.

3

(c) Verify whether the set of real numbers of the form $b\sqrt{2}$, with b rational, forms a ring or not.

3

9. (a) Show that the modulo 5 system for the set {0, 1, 2, 3, 4} is a field with respect to addition and multiplication under modulo system.

3

(b) Are the groups (Z, +) and (Q, +) isomorphic? Justify.

3

(c) Let $\phi: (G, \circ) \to (G', *)$ be a homomorphism. Prove that ker ϕ is a normal subgroup of G.

4

UNIT-IV

10. (a) In any triangle ABC, with usual notations, prove that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

22M/78

13		
72 X (b)	Find the area of the parallelogram whose diagonals are $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$.	3
(c)	Find the vectorial equation of the plane, passing through three points whose position vectors are (-4, 1, 1), (2, 1, -2)	3
69)	and (8, -3, -2).)
11. (a)	Find the torque about the point $B(3, -1, 3)$ of a force $F(4, 2, 1)$ passing through the point $A(5, 2, 4)$.	3
1729 (b)	If $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$, $\vec{\delta}$ are vectors such that	
<u>_69</u>]	$\vec{\alpha} \times \vec{\beta} = \vec{\gamma} \times \vec{\delta}$ and $\vec{\alpha} \times \vec{\gamma} = \vec{\beta} \times \vec{\delta}$, then show that the vectors $\vec{\alpha} - \vec{\delta}$ and $\vec{\beta} - \vec{\gamma}$ are collinear.	3
(c)	Prove that the four points $2\hat{i} + 3\hat{j} - \hat{k}$, $\hat{i} - 2\hat{j} + 3\hat{k}$, $3\hat{i} + 4\hat{j} - 2\hat{k}$ and $\hat{i} - 6\hat{j} + 6\hat{k}$ are coplanar.	4
12. (a)	Show, by vector method, that the angle in a semicircle is a right angle.	4,
(b)	Determine the values of λ and μ for which the vectors $-3\hat{i} + 4\hat{j} + \lambda\hat{k}$ and	
	$\mu \hat{i} + 8 \hat{j} + 6 \hat{k}$ are collinear. 1+1	1=2

(7)

(c) Find by vector method, the volume of the tetrahedron, whose coordinate vectors are (0, 1, 2), (3, 0, 1), (1, 1, 1) and (4, 3, 2).

4