

TDP (Honours) 5th Semester Exam., 2021 (Held in 2022)

MATHEMATICS

(Honours)

FIFTH PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer eight questions, taking two from each Unit

UNIT-I

1. (a) Discuss the convergence of the sequence $\{x_n\}$ defined by

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

for $n \in N$.

4

(b) State nested intervals theorem. Justify with an example that the condition of closedness of the intervals in the statement cannot be relaxed. 1+2=3

(Turn Over)

(2)

(c) Find the set of limit points of the set

$$\left\{\frac{1}{n}:n\in N\right\}$$
 3

5

3

2

5

2. (a) Show that a sequence of real numbers is convergent iff it is Cauchy.

(b) Examine the sequence $\{x_n\}$, defined by $x_1 = \sqrt{2}, x_{n+1} = \sqrt{2x_n}, n \in \mathbb{N}$

for converges. If yes, then find its limit. 5

3. (a) Show that every convergent sequence is bounded. Is the converse true? Justify your answer.

(b) Find a countable and an uncountable covering of the set R of real numbers.

(c) Show that Q, the set of irrational numbers is Archimedean ordered field but not ordered complete.

UNIT-II

4. (a) Discuss the Riemann integrability of the function $f:[0, 1] \to R$ given by

$$f(x) = \begin{cases} \frac{1}{q}, & \text{when } x = \frac{p}{q}, p, q \in N, (p, q) = 1\\ 0, & \text{when } x \text{ is irrational or zero} \end{cases}$$

22M**/126** (Continued)

2026

(3)

(b) Let $f:[a, b] \to R$ be continuous except for finitely many points in [a, b]. Show that f is Riemann integrable on [a, b].

(c) Show that the sum of two Riemann integrable functions is Riemann integrable.

5. (a) Let f be a bounded function on [a, b] and P be a partition of [a, b]. If P' is a refinement of P, then show that

 $L(P,f) \le L(P',f) \le U(P',f) \le U(P,f)$

(b) State Bonnet's form of second mean value theorem of integral calculus. Applying this theorem, show that

$$\left| \int_{a}^{b} \frac{\sin x}{x} \, dx \right| \le \frac{2}{a}$$

where $0 < a < b < \infty$.

2+3=5

4

2

(c) State first mean value theorem for integrals.

6. (a) A function $f:[0,1] \to R$ is defined by

$$f(x) = \frac{1}{a^{r-2}}$$

where $\frac{1}{a^r} < x \le \frac{1}{a^{r-1}}, r = 1, 2, 3, \dots$ and

a>2. Is f Riemann integrable on [0,1]? If so, then evaluate

$$\int_0^1 f(x) dx$$
 5

(Turn Over)

22M/126

(4)

(b) Prove with the help of an example that the equation

$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$

is not always valid.

Show that second mean value theorem does not hold good in [-1,1] for the functions $f(x) = g(x) = x^2$. Also test the validity of the first (generalized) mean value theorem.

UNIT-III

7. (a) Show that the integral

$$\int_0^{\pi/2} \sin x \log (\sin x) \, dx$$

is convergent and hence evaluate it.

- Find the total length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}.$
- (c) Find the value of $\Gamma\left(\frac{9}{2}\right)$. 1
- 8. (a) Find the length of the cardioid $r = a(1 - \cos \theta)$ lying outside the circle $r = a\cos\theta$.

(Continued)

2

3

5

4

5

20 21 (5)

(b) Discuss the convergence of

$$\int_0^1 \frac{\sin\frac{1}{x}}{\sqrt{x}} dx$$

5

4

9. (a) Discuss the convergence of

$$\int_0^1 x^{m-1} (1-x)^{n-1} dx$$

(b) Prove that

$$B(m,n) = \int_0^\infty \frac{t^{m-1}}{(1+t)^{m+n}}; \quad m, \ n > 0$$

Show that the volume of the catenoid formed by the revolution about the x-axis, of the area bounded by the catenary

$$y = \frac{\alpha}{2} (e^{x/\alpha} + e^{-x/\alpha})$$

the y-axis, the x-axis and an ordinate is

$$\frac{1}{2}\pi a(sy+ax)$$

s being the length of the arc between (0, a) and (x, y).

(Turn Over)

22M/126

22M/126

(6)

UNIT-IV

10. (a) By changing the order of integration, prove that

$$\int_0^1 dx \int_x^{1/x} \frac{y^2 dy}{(x+y)^2 \sqrt{1+y^2}} = \frac{(2\sqrt{2}-1)}{2}$$

(b) Obtain the Fourier series expansion of $f(x) = x \sin x$ on $[-\pi, \pi]$ and hence deduce

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots$$

- 11. (a) Examine whether the sequence of functions $\{f_n\}$, defined by $f_n(x) = nx(1-x)^n$ is uniformly convergent in [0,1] or not.
 - (b) Let $\sum a_n x^n$ be a power series with sum function f and radius of convergence R(>0). Then show that f is continuous, derivable and find its derivative in (-R, R).

12. (a) Evaluate:

$$\iiint_E \frac{dxdydz}{x^2 + y^2 + (z - 2)^2}$$

where $E: x^2 + y^2 + z^2 = 1$.

5

5

5

22M/126

(Continued)

2021

(b) Give an example, with justification, of a sequence of real-valued functions which converges pointwise but is not uniformly convergent.

+ + +

S-5/MTMH/

5

22M-370/126

TDP (Honours) 5th Semester Exam., 2020 (Held in 2021)

MATHEMATICS

(Honours)

FIFTH PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer two questions from each Unit ave baranad dr : Hall Latery ...

UNIT I our value winds Deal don't

1. (a) State least upper bound axiom of \mathbb{R} . Is the set Q of all rational numbers enjoy LUB property? Justify your answer.

11/2+31/2=5

(b) State and prove Heine-Borel theorem. set respectors and adversarially 1+4=5

- All radial some all Discuss the convergence of (a)2. 5 sequence $\{nx^n\}$.
 - State Cauchy's first limit theorem for (b) sequence. Is the converse of this theorem always true? Justify your answer. 2+3=5

(Turn Over)

(2)

(0)

3. (a) Define limit superior and limit inferior of a sequence using inequalities. Find the limit superior and limit inferior of the sequence $\{x_n\}$, if they exist, where

 $x_n = \begin{cases} 1 & \text{, if } n = 1 \\ 2 & \text{, if } n = 2, 4, 6, 8, \cdots \\ \text{least prime factor of } n, \text{ if } n = 3, 5, 7, 9, \cdots \\ & 1\frac{1}{2} + 1\frac{1}{2} + 2 = 5 \end{cases}$

(b) State and prove Bolzano-Weierstrass theorem for sequences.

UNIT-II

4. (a) Let $f:[a, b] \to \mathbb{R}$ be bounded. Show that f is Riemann integrable if and only if for each $\varepsilon > 0$, there corresponds a $\delta > 0$ such that for every partition P of [a, b] with $||P|| < \delta$,

 $U(P, f) - L(P, f) < \varepsilon$ 5

(b) Give an example of a function, with justification, which is bounded but not Riemann integrable. 2½

(c) We know that "if a function f is bounded and integrable on [a, b], then |f| is also bounded and integrable on [a, b]." Is the converse always true? Justify.

13-21/146 (Continued)

5. (a) If f and g are two functions, both bounded and integrable on [a, b], then prove that their product fg is also bounded and integrable on [a, b].

(3)

(b) Define primitive of a function. Is function admitting of a primitive always continuous? Justify. 11/2+31/2=5

6. (a) Prove that the integral of an integrable function is continuous.

(b) State Weierstrass's form of second mean value theorem of integral calculus.

(c) If $f, g: [a, b] \to \mathbb{R}$ be bounded functions and P be any partition of [a, b], then with usual notations, prove that—

(i) $L(P, f+g) \ge L(P, f) + L(P, g)$; (ii) $U(P, f+g) \le U(P, f) + U(P, g)$.

21/2+21/2=5

5

3

2

UNIT-III > 4 > 0 mode

7. (a) Show that

 $\int_0^\infty \frac{\sin x}{x} dx$

converges but not absolutely.

its

5

5

(b) Define gamma function and discuss its convergence.

13-21/146

(Turn Over)

6

(Continued)

21/2

8. (a) With usual notations, show that

$$\Gamma(n) \Gamma\left(n + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2n-1}} \Gamma(2n), \quad n > 0$$

- (b) Show that the arc of the upper-half of the cardioid $r = a(1 \cos \theta)$ is bisected at $\theta = \frac{2\pi}{3}$. Hence find the perimeter of the curve.
- 9. (a) Find the volume and surface area of solid generated by revolving about y-axis that part of the astroid $x = a\cos^3 \theta$, $y = a\sin^3 \theta$

that lies in the first quadrant.

(b) If f(x) be continuous on [a, b] and $\lim_{x \to a^{+}} (x - a)^{\mu} f(x)$

be non-zero finite number, then prove that $\int_a^b f(x) dx$ converges absolutely, when $0 < \mu < 1$

UNIT-IV

10. (a) If $\{f_n\}$ be a sequence of real-valued integrable functions, which converges uniformly to the function f in [a, b], then prove that f is integrable in [a, b] and

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx$$

13-21/146

(Continued)

5

5

- (b) Obtain the Fourier series expansion of $f(x) = |\sin x| \text{ on } [-\pi, \pi]$
- 11. (a) Find the Fourier series for the function f(x) defined by

$$f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ 1 - x & \text{for } 1 < x < 2 \end{cases}$$

Hence deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

(b). Evaluate

$$\iiint_E x^{\alpha} y^{\beta} z^{\gamma} (1 - x - y - z)^{\lambda} dxdydz$$

when $\alpha > -1$, $\beta > -1$, $\gamma > -1$, $\lambda > -1$ and E is the tetrahedron bounded by the coordinate planes and the plane x+y+z=1.

(a) By changing the order of integration, show that

$$\int_0^1 dx \int_x^{1/x} \frac{y dy}{(1+xy)^2 (1+y^2)} = \frac{\pi - 1}{4}$$

(b) Find the condition so that the series

$$\sum_{n=1}^{\infty} \frac{x}{n^p + x^2 n^q}$$

converges uniformly for all real x.

13-21-500/146

S-5/MTMH/05/20

5

5

5

S-5/MTMH/05/19

TDP (Honours) 5th Semester Exam., 2019

MATHEMATICS

(Honours)

FIFTH PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer two questions from each Unit

in maupas-dus in UNIT I aimilai and

- 1. (a) Show that for any two real numbers x and y with $x < y \exists$ an irrational number z s.t. x < z < y.
 - (b) Let (x_n) be a real sequence s.t. $x_n \to 0$ as $n \to \infty$. Show that the sequence (s_n) defined by

$$s_n = \frac{x_1 + x_2 + \dots + x_n}{n} \to 0 \text{ as } n \to \infty$$

(c) Prove that every compact subset of R (the set of real numbers) is closed.

20M/71

(Turn Over)

(2) 5M-2419

1/1/ 1000 A SI ZI ZZOZ

3

2

5

2. (a) State Heine-Borel theorem in R (the set of real numbers). Let

$$F = \left\{ \left(\frac{1}{n}, \frac{2}{n} \right) : n = 2, 3, 4, \dots \right\}$$

be an open cover of (0, 1). Show that no finite sub-collection of F can cover (0, 1). Is [0, 1] compact? Justify your answer. $1\frac{1}{2}+2\frac{1}{2}+1=5$

- (b) State nested intervals theorem. Justify with an example that the condition of closedness of the intervals in the statement cannot be relaxed.
- (c) Give an example of a sequence which has infinite number of sub-sequential limits.
- 3. (a) Prove that the sequence $\{x_n\}$, defined by

$$x_1 = \sqrt{2}, \ x_{n+1} = \sqrt{2x_n}, \ n \in \mathbb{N}$$

converges and find the limit.

(b) Show that a real sequence is convergent iff it is Cauchy.

20M/71 (Continued)

(3)

UNIT-II

- **4.** (a) Let f be a bounded function on [a, b] and P be a partition of [a, b]. If P' is a refinement of P, then show that $L(P, f) \le L(P', f) \le U(P', f) \le U(P, f)$
 - (b) Let $f:[a, b] \to \mathbb{R}$ be Riemann integrable on [a, b]. Show that $\frac{1}{f}$ is Riemann integrable on [a, b], if $\exists k \in \mathbb{R}^+$ s.t. $f(x) \ge k \ \forall x \in [a, b]$.
- **5.** (a) Let $f: [0, 1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ x^2, & \text{if } x \in (\mathbb{R} \cdot \mathbb{Q}) \cap [0, 1] \end{cases}$$

Discuss the Riemann integrability of f on [0, 1].

(b) If $f: [a, b] \to \mathbb{R}$, $g: [a, b] \to \mathbb{R}$ be both integrable on [a, b] and g keeps same sign over [a, b], then show that there exists a number μ lies between the bounds of f in [a, b] such that

$$\int_{a}^{b} f(x) g(x) dx = \mu \int_{a}^{b} g(x) dx$$

20M/71

(Turn Over)

(4) 5M. 2019

Further if f is continuous on [a, b], then show that there exists a point ξ in [a, b] such that

$$\int_{a}^{b} f(x) g(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$
3½+1½=5

- **6.** (a) Let $f: [a, b] \to \mathbb{R}$ be continuous except only at finite number of points on [a, b]. Prove that f is Riemann integrable on [a, b].
 - (b) If f is a bounded function on [a, b], then prove that corresponding to every $\varepsilon > 0$, there exists a $\delta > 0$, such that $U(P, f) < \int_a^b f(x) \, dx + \varepsilon, \text{ for every partition}$ $P \text{ of } [a, b] \text{ with } ||P|| < \delta.$

UNIT-III

7. (a) Discuss the convergence of

$$\int_0^{\frac{\pi}{2}} x^m \csc^n x \, dx$$
 5

(b) Find the total length of the astroid

$$x^{2/3} + y^{2/3} = a^{2/3}$$

20M/71

(Continued)

5

5

00 142 (5)

8. (a) Find the whole length of the loop of the curve

$$3ay^2 = x(x-a)^2, a>0$$

(b) Discuss the convergence of

$$\int_0^1 \frac{\sin\frac{1}{x}}{\sqrt{x}} dx$$

- (c) By using definition of β -function, show that the β -function is symmetric in two variables, i.e., $\beta(m, n) = \beta(n, m)$.
- 9. (a) Find out the volume of the solid bounded by infinite spindle-shape surface generated by revolving the curve $y = \frac{1}{1+x^2}$ about its asymptote.

(b) Evaluate

$$\int_0^t x^{\alpha+k-1} (t-k)^{\beta+k-1} dx$$

and find its value, when $\alpha = \beta = \frac{1}{2}$.

20M/71

(Turn Over)

2

10. (a) If a sequence $\{f_n\}$ of real-valued functions converges uniformly in $X \subseteq \mathbb{R}$ to a function f and x_0 is a limit point of X such that

 $\lim_{x \to x_0} f_n(x) = a_n, \ n = 1, 2, 3, \dots$

then prove that-

(i) $\{a_n\}$ converges;

- (ii) $\lim_{x \to x_0} f(x)$ exists and equal to $\lim_{n \to \infty} a_n$. 2+3=5
- (b) Obtain the Fourier series expansion of $f(X) = X \sin X$ on $[-\pi, \pi]$ and hence deduce

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots$$

11. (a) Show that the sequence of functions (f_n) , defined by

$$f_n(X) = \frac{nx}{1 + n^2 x^2}, \ 0 \le x \le 1$$

is not uniformly convergent on [0, 1].

(b) Assuming the validity of differentiation under the integral sign, show that

$$\int_0^\pi \frac{\log(1+\sin\alpha\cos x)}{\cos x} dx = \pi\alpha$$

20M/71

(Continued)

5

(7)

12. (a) Show that a power series $\sum a_n x^n$ can be integrated term-by-term within the interval of convergence and also show that the original series and the series obtained after term-by-term integration have same radius of convergence.

(b) By changing the order of integration, prove that

$$\int_0^1 dx \int_x^{\frac{1}{x}} \frac{y^2 dy}{(x+y)^2 \sqrt{1+y^2}} = \frac{2\sqrt{2}-1}{2}$$

* * *

20M-470/71

S-5/MTMH

S-5/MTMH/05/18

TDP (Honours) 5th Semester Exam., 2018

MATHEMATICS

(Honours)

FIFTH PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer two questions from each Unit

UNIT-I

Show that $\mathbb Z$ is neither bounded above (a)4 nor below.

convergence Discuss the (b)

sequence (x_n) given by

$$x_n = \frac{1}{\lfloor \underline{1}} - \frac{1}{\lfloor \underline{2}} + \dots + \frac{(-1)^{n+1}}{\lfloor \underline{n}}$$
 3

If $-1 < r \le 1$, then prove that the (c) sequence $\{r^n\}$ is convergent. 3

(Turn Over)

M9/69

(2)

2. (a) Test the behaviour of the sequence

$$+\frac{1}{n}$$

5

5

5

- (b) Prove that every bounded sequence of real numbers has a convergent subsequence.
- **3.** (a) Prove that arbitrary intersection of closed sets is closed. Is the result true for arbitrary union? Justify your answer.

 3+2=5
 - (b) State and prove Cauchy criterion for convergence of real sequences. 1+4=5

UNIT-II

- **4.** (a) Let $f:[a, b] \to \mathbb{R}$ be bounded. Show that $\mathcal{L}(P, f) = \mathbb{R}$ be bounded. Show that $\mathcal{L}(P, f) = \mathbb{R}$ be bounded. Show that $\mathcal{L}(P, f) = \mathcal{L}(P, f) < \varepsilon$.
 - (b) Let $f:[a, b] \to \mathbb{R}$ be integrable on [a, b]. Then show that |f| is also integrable on [a, b]. Is the converse true? Justify your answer.

M9**/69**

(Continued)

5M- 298 (3)

5. (a) Discuss the Riemann integrability of the function $f:[0,1]\to\mathbb{R}$ given by

$$f(x) = \begin{cases} \frac{1}{q}, & \text{when } x = \frac{p}{q}, p, q \in \mathbb{N}, (p, q) = 1\\ 0, & \text{when } x \text{ is irrational or zero} \end{cases}$$

- (b) State and prove first mean value theorem of integral calculus.
- 6. (a) State Bonnet's form of second mean value theorem of integral calculus. Applying this theorem, show that

$$\left| \int_{a}^{b} \frac{\sin x}{x} \, dx \right| \le \frac{2}{a}$$

where $0 < a < b < \infty$.

(b) If a function $f:[a, b] \to \mathbb{R}$ be integrable on [a, b], then prove that the function F defined by $F(x) = \int_{a}^{x} f(t) dt$, $x \in [a, b]$ is differentiable at any point $c \in [a, b]$ at which f is continuous and F'(c) = f(c).

UNIT-III

7. (a) Discuss the convergence of

$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$

(b) Show that $\int_0^1 \log x dx$ is convergent and hence evaluate it.

M9/69

(Turn Over)

5

(4)

8. (a) When n is a positive integer, show that

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{2^{2n} n!} \sqrt{\pi}$$

- (b) Find the volume and surface area of the solid generated by revolving one arch of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ about its base.
- **9.** (a) Find the perimeter of the loop of the curve

$$9ay^2 = (x-2a)(x-5a)^2, \ a>0$$

(b) Discuss the convergence of the integral

$$\int_0^\infty x^{-\frac{1}{2}} e^{-x} dx$$

UNIT-IV

- **10.** (a) Examine whether the sequence $\{f_n\}$, defined by $f_n(x) = nx(1-x)^n$ is uniformly convergent in [0, 1] or not.
 - (b) Obtain the Fourier series expansion of the function $f(X) = X \sin X$ on $[-\pi, \pi]$ and hence deduce

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots$$

M9/69

(Continued)

5

5

11. (a) Apply Parseval's identity to the function f(x) = x, $-\pi \le x \le \pi$ and deduce that

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

(b) By changing the order of integration, prove that

$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} \frac{dy}{(1+e^y)\sqrt{1-x^2-y^2}} = \frac{\pi}{2} \log \left(\frac{2e}{1+e}\right) - 5$$

12. (a) Show that

$$\int_0^{\pi} \frac{\log(1 + a\cos x)}{\cos x} dx = \pi \sin^{-1} a, \ |a| < 1$$

(b) Let $\sum a_n x^n$ be a power series with sum function f and radius of convergence R(>0). Then show that f is continuous, derivable and $f'(x) = \sum n a_n x^{n-1}$, $x \in (-R, R)$.

M9-360/69

S-5/MTMH/05/18

AR 12/2013

S-5/MTMH/05/17

TDP (Honours) 5th Semester Exam., 2017

MATHEMATICS (Honours)

FIFTH PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer two questions from each Unit

UNIT-I

1.	(a)		m for	prove infiniters).				of	4
((b)	Show	that t	the set	$\mathbb{R} \setminus \mathbb{Q}$	is dens	e in I	R. :	3
; - ((c)			a mon					
		bound					•		3
2. (•	State theore		prove \mathbb{R} .	the r	nested	inter	val	5
, (,	State theore		prove	Cauc	hy's fi	rst li	mit	5
8M/76	5						(Tun	n Ove	er

5m 2010

A STATE LAND

3. (a) Prove that $\phi \neq S \leq \mathbb{R}$ is compact if and only if it is closed and bounded.

(b) Prove that the intersection of a finite number of open sets is an open set. Is the intersection of arbitrary family of open sets always open? Justify your answer.

3+2=5

UNIT-II

4. (a) If f is a bounded function on [a, b], then prove that corresponding to every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$U(P, f) < \int_a^b f(x) \, dx + \varepsilon$$

for every partition P of [a, b] with $||P|| < \delta$.

(b) Discuss the Riemann integrability of the function $f:[0,\frac{\pi}{4}]\to\mathbb{R},$ given by

$$f(x) = \begin{cases} \cos x, & x \in \mathbb{Q} \\ \sin x, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 5

5. (a) Let $f:[a, b] \to \mathbb{R}$ be continuous at $c \in [a, b]$ and $F(x) = \int_a^x f(t) \, dt$, $\forall x \in [a, b]$. Then prove that F is derivable at c and F'(c) = f(c).

(b) Let $f:[a, b] \to \mathbb{R}$ be continuous except for finitely many points in [a, b]. Show that f is Riemann integrable on [a, b].

8M/76 (Cont

(Continued)

5

5

4

2

5

5

5

5

5

(c) Let $f, g: [-1, 1] \to \mathbb{R}$ be given by $f(x) = \operatorname{sgn}(x)$ and g(x) = [x]. Is f-Riemann integrable? Is g Riemann integrable? What can be said about the Riemann integrability of f + g?

 (a) State and prove Weierstrass form of second mean value theorem of integral calculus.

(b) A function $f:[0, 1] \to \mathbb{R}$ is defined by

$$f(x) = \frac{1}{a^{r-2}}$$

where $\frac{1}{a^r} < x \le \frac{1}{a^{r-1}}$, r = 1, 2, 3, ... and a > 2. Is f Riemann integrable on [0, 1]?

If so, find the value of $\int_0^1 f(x) dx$.

UNIT—III

7. (a) Show that the integral $\int_0^{\pi/2} \sin x \log(\sin x) dx$

is convergent and hence evaluate it.

(b) Discuss the convergence of the gamma function.

8. (a) Find the length of the cardioid $r = a(1 - \cos \theta)$ lying outside the circle $r = a\cos \theta$.

8M/76 (Turn Over)

5M-2000 (4)

- (b) Find the volume and surface area of the solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about its base.
- 9. (a) Find the volume and surface area of the solid generated by revolving the cardioid $r = a(1 \cos \theta)$ about the initial line.
 - (b) If f(x) be continuous on (a, b] and

$$\lim_{x\to a^+} (x-a)^{\mu} f(x)$$

be non-zero finite number, then prove that $\int_a^b f(x) dx$ converges absolutely, when $0 < \mu < 1$.

UNIT-IV

10. (a) Obtain the Fourier series, of the function f(x) in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$, defined by

$$f(x) = \begin{cases} x - [x] - \frac{1}{2}, & \text{when } x \text{ is not an integer} \\ 0, & \text{otherwise} \end{cases}$$

(b) Using appropriate substitution, evaluate

$$\int_{x=0}^{1} \int_{y=0}^{1-x} e^{\frac{y}{x+y}} dy dx$$
 5

8M/76

(Continued)

11. (a) By changing the order of integration,

$$\int_0^1 \int_x^{1/x} \frac{y \, dy}{(1+xy)^2 (1+y^2)} = \frac{\pi - 1}{4}$$

- (b) Let $f_n:(a, b) \to \mathbb{R}$ be differentiable. Assume $f, g:(a, b) \to \mathbb{R}$ s.t. $f_n \to f$ and $f'_n \to g$ uniformly. Then $f_n \to g$ is differentiable and f' = g on $f_n \to g$.
- 12. (a) Evaluate

5

5

5

5

$$\iiint_E \frac{dx \, dy \, dz}{x^2 + y^2 + (z - 2)^2}$$

where $E: x^2 + y^2 + z^2 = 1$.

(b) Give an example, with justification, of a sequence of real-valued functions which converges pointwise but is not uniformly convergent.

* * *

8M-420/76

S-5/MTMH/05/17

5

5

5

A 12/28/6

S-5/MTMH/05/16

TDP (Honours) 5th Semester Exam., 2016

MATHEMATICS

(Honours)

FIFTH PAPER

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer two questions from each Unit

UNIT-I

- 1. (a) Show that an upper bound u of φ ≠ S ⊆ R is the supremum of S if and only if ∀ε > 0∃Sε ∈ S such that u ε < Sε.
 (b) Show that every convergent sequence is bounded. Is the converse true? Justify your answer.
 (c) Prove that an open interval (a, b) in R (the set of real numbers) is not compact.
 (d) State and prove the Archimedean
- 2. (a) State and prove the Archimedean \mathbb{R} (the set of real numbers).

M7/76

(Turn Over)

(2)

convergence of the Discuss sequence $\{x_n\}$ defined by $x_n = \left(1 + \frac{1}{n}\right)^n$, for $n \in N$. Examine whether the set $[0, \infty)$ is compact in \mathbb{R} or not by only using the 3 definition of compact sets. 3. (a) Show that the set of rationals forms a $K^{-\frac{1}{4},\frac{1}{4}}$ dense subset of \mathbb{R} . 5 (b) Let A and B be two non-empty subsets of \mathbb{R} (the set of real numbers) and $C = \{x + y : x \in A \text{ and } y \in B\}.$ If each of A and B has supremum, show that C has supremum $\sup C = \sup A + \sup B.$

UNIT-II

4. (a) Let $f:[0,1] \to \mathbb{R}$ be defined by

(a) Let
$$f:[0, 1] \to \mathbb{R}$$
 be defined by
$$f(x) = \begin{cases} 0, & \text{when } x \text{ is irrational or zero} \\ \frac{1}{q}, & \text{when } x = \frac{p}{q}, \text{ where } p, q \in \mathbb{N} : (p, q) = 1 \end{cases}$$

Verify whether f is Riemann integrable or not in [0, 1].

(b) Let $f:[a,b] \to \mathbb{R}$ be bounded. Show that fis Riemann integrable if and only if for each $\varepsilon > 0 \exists$ a partition P of [a, b] such

$$U(p, f) - L(p, f) < \varepsilon.$$

(Continued) M7/76

5. (a) A function f is bounded and integrable in [a, b], then |f| is also bounded and integrable on [a, b]. Is the converse true in general? Justify your answer.

Let $f:[-2,2] \to \mathbb{R}$ be defined f(X) = [X]. Discuss the Riemann integrability of f and if f is Riemann integrable, find the value of the integral.

If $f:[a,b] \to \mathbb{R}$ be Riemann integrable on [a, b], then prove that the function F defined by

$$F(x) = \int_{a}^{x} f(t) dt$$

is continuous. on [a, b].

6. (a) Suppose $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be such that

> (i) f is continuous on [a, b] and g is Riemann integrable on [a, b]

3

5

5

(ii) g has no root in [a, b]. Then show that $\exists \xi \varepsilon [a, b]$ such that

$$\int_a^b f(x) g(x) dx = f(\xi) \int_a^b g(x) dx$$

State Weierstrass form of second mean value theorem of integral calculus. Applying this theorem, show that

$$\left| \int_a^b \frac{\sin x}{x} dx \right| \le \frac{4}{a}$$
, for $0 < a < b < \infty$

M7/76 (Turn Over)

19

5

(4) 5M-2016

5×1202-11.29 Show that $\int_0^\infty \frac{\sin x}{x} dx$ is convergent but not absolutely.

Discuss the convergence of the integral

$$\int_0^1 x^{m-1} (1-x)^{n-1} dx$$

5

3

2

5

5

5

5

- Find the length of the parabola $y^2 = 16x$ measured from the vertex to one extremity of the latus rectum.
- Discuss the convergence of the beta function.
 - Find the surface area of the solid generated by revolving the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ about the x-axis.
- Show that the arc of the upper half of the cardioid $r = a(1 - \cos \theta)$ is bisected at $\theta = \frac{2\pi}{3}$. Hence find the perimeter of the

Show that $\sqrt{\pi} \Gamma(2n) = 2^{2n-1} \Gamma(n) \Gamma\left(n + \frac{1}{2}\right)$ for n > 0.

M7/76 (Continued) 20 16

UNIT-IV

10. (a) Let $\{f_n\}$ be a sequence of real valued continuous functions defined on [a, b]. If $\{f_n\}$ converges uniformly to the limit function f on [a, b], then prove that f is continuous on [a, b].

(b) Show that

$$\iint\limits_{R} \frac{\sqrt{a^2b^2 - b^2x^2 - a^2y^2}}{\sqrt{a^2b^2 + b^2x^2 + a^2y^2}} dx \ dy = \pi ab \left(\frac{\pi}{2} - 1\right)$$

where the field of integration R varies over the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

- 11. (a) Let $\sum_{n} a_n X^n$ be a power series with radius of convergence R. Prove that the radius of convergence R. Prove that the series is uniformly convergent on [-s, s] where 0 < s < R.
 - (b) By changing the order of integration, prove that

$$\int_{0}^{1} dx \int_{x}^{1/x} \frac{y^{2} dy}{(x+y)^{2} \sqrt{1+y^{2}}} = \frac{(2\sqrt{2}-1)}{2}$$

State Parseval's identity.

(Turn Over)

1

5

5

4

M7/76

U.C. 500

12. (a) The function
$$f$$
 is defined by $f(x) = 1 + 2 \cdot 4x + 3 \cdot 4^2 x^2 + 4 \cdot 4^3 x^3 + \dots + n \cdot 4^{n-1} x^{n-1} + \dots$

Show that f is continuous on $(-\frac{1}{4}, \frac{1}{4})$. Evaluate $\int_0^{1/8} f(x) dx$.

Let $D \subset \mathbb{R}$ and for each $n \in \mathbb{N}$ $f_n: D \to \mathbb{R}$ (b) be bounded on D. If the sequence $\{f_n\}$ is uniformly convergent on D, then show that the limit function f is bounded on D.

4

Evaluate: (c)

$$\int_0^\infty e^{-t^2} \cos xt \ dt$$
 3